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Abstract

An unbounded system of a plate in contact with a liquid is presented. The coupling equations are set,
accounting for the compressibility of the liquid and the Mindlin–Reissner plate theory. A numerical
solution, founded on an explicit scheme, is validated. The resolution is applied to a strip loaded by a unit
pressure step spreading uniformly along the strip axis. The simulation for every speed of loading ranging
among the characteristic velocities of the coupled system points out how a steady state response can emerge
from the transient one. The steady state solution is theoretically established, which agrees well with the
numerical prevision. The form of the response is different for every region limited by the characteristic
velocities. For a load speed greater than the speed of acoustic waves in the liquid, the pressure propagates
along a straight line and the existence of a steady state response is confirmed. On the contrary, for a lower
load speed, no pressure front is present and the response always keeps its transient character. The solution
shows that displacements obtained in the transient part increase incessantly with time and become quickly
larger than in the stationary part. Concerning the stresses, the study reveals that the amplitudes are of the
same order in the two parts. The solution can be extended easily to the case of a pressure spreading with a
cylindrical symmetry, which can correspond to the real conditions of detonation loading.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

The present work finds its place in the field of wave propagation and fluid–structure coupling.
At the beginning, the problem is set to find the response of a plate in contact with a liquid when a
pressure moves on the plate with a high velocity, possibly of the same order as sound velocities in
the plate or in the liquid. This problem is often encountered in cases of shocks and explosions. The
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shock wave caused by a detonation can reach several thousand metres per second and presents an
absolutely steep front, equating to an ideal step. To better address the problem and be able to
form some general conclusion, the case is considered of a very large coupled unbounded domain
so that the propagation of motion is not impeded by physical limits. Although fluid–structure
coupling has been studied widely, it seems to have never been considered exactly under this
assumption.
Among couplings of large plate–liquid systems, the most often encountered is that of an ice

sheet on a wide surface of water. A lot of works refers to this study and a recent one of Nugroho
et al. [1] provides numerous references. The usual assumption in this problem is to consider the
liquid incompressible and the plate under the classical flexion theory. The liquid has a constant
depth. Most often, the purpose is to find the response to various transport systems moving on the
ice such as trucks or aeroplanes. The problem is well adapted to the study of stationary responses.
Another coupling concerning large plates has been considered recently by Abrahams and

Wickham [2]. It deals with the study of plates in contact with a moving liquid. An impulsively
started moving load hits the plates and the resultant oscillations are studied. An important
theoretical work has been achieved, supported by numerical computation. In this case too, the
liquid is considered incompressible and the plate under the classical flexion theory.
The last two examples considered large plate–fluid systems; in that sense, they have similarity

with the present problem. Nevertheless, the response to high-velocity loading, possibly supersonic,
must be obtained by accounting for compressibility of the liquid.
Under the same assumptions of the Kirchhoff theory of plates and incompressible liquid,

Amabili and Kwak [3] presented a study of the vibration of circular plates on a free fluid surface.
They proposed solutions to axisymmetric plates with various boundary conditions by the way of
the Hankel transformation. To approach the coupled problem, it is already necessary to
understand the response to a moving load of a plate alone, in the absence of coupling. In this field,
the most important work has been realized in the study of beams on an elastic foundation. A lot
of studies have been achieved on this topic. A recent work, by Felszeghy [4], reviews 18 specialized
references extensively. The most significant results, useful in this context, are recalled.
The theoretical study of a beam loaded by a moving force or pressure step always refers to a

steady state response, which would appear stationary to an observer travelling with the load.
Then, the beam is imagined to be infinite in extent in front of and behind the position of loading.
More generally, the beam is supposed to be resting on an elastic foundation, but the case of a
completely free beam is also envisaged as the degenerated case of an infinitely soft foundation.
The transient responses of beams, especially when they are semi-infinite, can be sought by means
of integral transform methods. Nevertheless, even in the more simple cases, the treatment results
in such an analytical complication that only an asymptotic study of the solution is practical. All
the results in the expression of the whole transient response were obtain by means of a
computational method, even the last by Felszeghy [5].
To study the response of a beam to a dynamical loading, the simplest model is that of the

classical flexion by Euler–Bernoulli. The deficiency of this model is that it accounts, neither for
inertia in longitudinal displacements due to cross-section rotations, nor for transverse shear
deformation. This model can be used only for long wavelengths, much greater than the height of
the beam. To make up for these defects, the Timoshenko modelling must replace it. This model is
able to account for short wavelengths, of the same order as the height of the beam. For shorter
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wavelengths, only a three-dimensional theory can be used, which negates the simplicity of beam
theories. According to these comments, well known in beam dynamics, one refers here only to the
Timoshenko beam theory.
In looking for harmonic flexural waves in a beam, a dispersion equation can be established,

which expresses the phase velocity versus circular frequency. If a beam, infinite in extent, is
submitted to a periodic excitation, the response, after the vanishing of transient parts, is the
superposition of harmonic waves. Each one travels at its own phase velocity, according to the
dispersion equation. Several phase velocities can correspond to the same frequency. If a beam,
infinite in extent, is submitted to a constant loading travelling at a constant velocity, the problem
is somewhat different. After the vanishing of transient parts, the response can appear frozen in co-
ordinates moving with the loading. Such a solution, if it exists, is called stationary or sometimes
quasi-stationary. To make the understanding of the solution easier, one refers to the simplest
loading, which is a travelling localized impulse (the solution to this basic loading allows to find the
response to any loading by convolution).
Contrary to the previous case, in the quasi-steady state case, the loading imposes the

phase velocity of the response and not its frequencies. If a quasi-stationary harmonic solution
exists, its phase velocity equals the loading velocity. Thus, to analyze the possibility of a quasi-
stationary response, the phase velocity must first be imposed in the dispersion equation. Only then
can the possible corresponding frequencies be searched. The dispersion equation of the
Timoshenko beam reveals the importance of two particular velocities, vb and vs; ðvb > vsÞ; so-
called characteristic, respectively the bar velocity and the modified shear velocity. For a phase
velocity ranging from 0 to vs only one frequency belongs to the interval �0;þN½: For a phase
velocity greater than vb only one frequency belongs to the interval �oc;þN½; oc being a cut-off
frequency corresponding to an infinite phase velocity. For a phase velocity belonging to the
interval �vs; vb½; the dispersion equation has non-real roots. It means that a harmonic solution
cannot appear; the propagating wave is changed into a near field. The demonstration of the
existence of a stationary response for a Timoshenko beam to a travelling loading can be found
extensively in Felszeghy [4]. To be valid, the study must exclude the neighbourhoods of the
characteristic velocities for which the wavelengths of responses should be much smaller than the
height of the beam.
Another significant result of the review is that it has been established that the transient solution

approaches the steady state solution asymptotically, for all ranges of load speed, at least within a
continuously expanding interval centred about the moving load. All these conclusions from
previous studies on beams alone confirm the interest of the research of a steady state solution for
coupled systems. It is hoped, by these means, to be able to describe the behaviour in the
neighbourhood of the front of loading theoretically. For plates, the Mindlin–Reissner assumption
corresponds to the Timoshenko theory for beams and will be chosen.

2. Statement of problem

To set the problem, consider a large plate in contact with a great quantity of liquid. The
dimensions of the plate are assumed so large and the amount of liquid so huge that the coupled
system seems unbounded when observed not far from the plate. The system can be imagined as
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the wall of a large filled tank or like an ice sheet on a wide and deep lake. The whole system is
at rest when suddenly a pressure spreads on the external surface of the plate like an explosion.
Using this example of loading justifies exploration of a large range of velocities—including
supersonic—with respect to the sound velocities in the plate or in the liquid. At this level of
presentation, it can be useful to give the range of some physical values in the topic of explosions
and dynamics of plates.

Concerning explosions, the focus will be on detonation, which is deterministic, contrary to
deflagration. Whether they are caused by gaseous mixtures or solid explosives like TNT, their
external effects in terms of the pressure field are exactly the same, just quantified by an energetic
equivalence factor. Inside an explosive cloud, for example a propane–oxygen mixture, in the
ambient conditions, the overpressure step of the shock wave can reach more than 3 MPa and the
velocity of the front more than 2500 m=s; if a detonation is initiated. Outside the cloud, at its
boundary, a shock wave propagates, launched in the air at a supersonic velocity, remaining
supersonic until the discontinuity of thermodynamics values ahead and behind the front vanishes.
Only then, and after the decay due to a three-dimensional (3-D) or 2-D expansion, the
perturbation in air becomes acoustic. For a strong detonation, the shock front velocity remains
supersonic for a long distance. If an aerial detonation is considered, at a given height from the
ground, a spherical shock wave propagates from the centre of explosion, supersonic at its
beginning. When this 3-D shock wave hits the ground, the pressure on the ground propagates
concentrically with a decreasing velocity [6]. At the exact time of contact of the sphere with the
plane, the spreading speed of the pressure on the plane is theoretically infinite. Then, it decreases,
like the overpressure step.

Concerning plates, the speed of sound in a constitutive material is generally well known. For
usual metallic materials such as steel or aluminium, the speed is among the highest, more than
5000 m=s: For polymeric materials, the speed of sound can be much less: 1700 m=s for pvc and
even less for some others. For ice, which has been mentioned earlier in this context, an
intermediate value of 2600 m=s is acceptable.

Concerning liquids, for this paper only the most common speed of sound in water is used, i.e.,
1500 m=s:
All these physical values of speed being recalled, it seems clear that all arrangements of them are

possible. Especially, if one considers, for the loading, the intersection of a 3-D spherical shock
wave with a plane, the spreading speed of the pressure on the plane can exceed, at least for a
moment, any possible value of sound velocity for a given material. To conclude this physical
aspect of loading by detonations, it is emphasized that, in a practical range, few detonations are
able to conserve constant overpressure step and velocity, particularly due to geometrical
expansion. Nevertheless, this is possible in two cases: in a 1-D guide, like a tunnel, or inside a
homogeneous explosive gaseous cloud.
A previous (recent) work by Renard and Taazount [7] presented results obtained for the

dynamic response of the plate alone, without any coupling. This work contained details, which
could aid the comprehension of the present paper. In its conclusion, it underlined that the
response of a plate to a pressure spreading cylindrically around a centre point, like that of a
detonation, is not far from the response of a strip loaded by a pressure travelling along its axis.
For this reason, this work will be limited to the study of loads moving axially along strips and
using only one space variable.
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Precisely, the response of the coupled system is supposed independent of the y co-ordinate,
measured on the transverse direction of the strip. For the plate, it is described only in terms of the
x co-ordinate measured on its longitudinal axis. To describe the liquid, the z co-ordinate is
introduced. The studied strip is considered infinitely long and free, only required to be in
permanent contact with the liquid. It is assumed to be at rest at time t ¼ 0 and subject to the
external pressure loading pðx; tÞ for t > 0:

2.1. Plate governing equations

Fig. 1 presents the geometry and co-ordinates of a plate and liquid coupled system. The plate
has a mass density r and a thickness h: Its Young’s modulus is E; Poisson ratio n; shear modulus
G; and shear correction factor k:
Two displacements are necessary to describe the motion of the strip: wðx; tÞ; the deflection or

displacement of the neutral axis, and Cðx; tÞ; the angular rotation of the cross-section. The latter
function must be distinguished from the slope of the neutral axis, according to Mindlin–Reissner
assumption.
The stresses induced by the bending can be deduced from w and C: Let s be the flexural stress

on the external surface and t the average shear stress in the cross-section.
To simplify the analysis of the problem, the following non-dimensional variables are

introduced:

r0 ¼
ffiffiffiffiffiffiffiffiffi
I=A

p
¼ h=

ffiffiffiffiffi
12

p
; ð1Þ

X ¼ x=r0; W ¼ w=r0; ð2Þ

where A represents the cross-sectional area and I its moment of inertia. Using the velocity of
longitudinal propagation in a plate

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ðrð1� u2ÞÞ

q
; ð3Þ

and the modified shear wave velocity

vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kG=r

p
; with k ¼ 0:86 ðReismann ½8�Þ; ð4Þ
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By setting

y ¼ vs=vp; T ¼ tvp=r0; P ¼ p=ðrV2
p

ffiffiffiffiffi
12

p
Þ; S ¼ s=ðrV2

p

ffiffiffiffiffi
12

p
Þ; ð5Þ

the non-dimensional equations of the movement are written in the well-known form

@2W=@T2 ¼ y2ð@2W=@X 2 � @C=@X Þ þ PðX ;TÞ; ð6Þ

@2C=@T2 ¼ @2C=@X 2 þ y2ð@W=@X �CÞ; ð7Þ

with the initial conditions of rest

W ðX ; 0Þ ¼ 0; cðX ; 0Þ ¼ 0; @W ðX ; 0Þ=@T ¼ 0; @CðX ; 0Þ=@T ¼ 0: ð8Þ

The non-dimensional forms S and G correspond to the dimensional forms s and t:

S ¼ �1
2
@C=@X ; G ¼ ðy2=

ffiffiffiffiffi
12

p
Þð@W=@X �CÞ: ð9Þ

In the study, the variables will be taken in their non-dimensional form, denoted in capital
letters.

2.2. Liquid-governing equations

The liquid is supposed inviscid. It is submitted to fast loading and must be supposed
compressible. Using the potential j; one writes

@2j=@t2 ¼ v21=
2j; ð10Þ

where v1 represents the velocity of acoustic waves.
v21 ¼ B=r1; B being the bulk compressibility modulus of the liquid and r1 its mass density. The

pressure and speeds are deduced by

p ¼ r1@j=@t; @u=@t ¼ �@j=@x; @w=@t ¼ �@j=@z; ð11Þ

where u and w are the displacements in the liquid along, respectively, in the x and z co-ordinate
directions. To obtain a non-dimensional form compatible with those chosen for the plate, new
non-dimensional variables are introduced as

F ¼ j=vpr0; Z ¼ z=r0; d ¼ v1=vp; m ¼ r1=r
ffiffiffiffiffi
12

p
: ð12Þ

Under these conditions, and by considering that every function is independent from y; the new
non-dimensional equations can be written, also using the plate characteristics as

@2F=@T2 ¼ d2ð@2F=@X 2 þ @2F=@Z2Þ; ð13Þ

@U=@T ¼ �@F=@X ; @W=@T ¼ �@F=@Z; P ¼ m@F=@T : ð14Þ

One assumes the liquid at rest at T ¼ 0; then the derivatives of F must be null at this time.

2.3. Equations of coupling

In the assumed absence of cavitation, the continuity of forces and normal displacement at the
interface needs to be ensured to account for coupling between the plate and the liquid. These
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conditions are summarized by the two equations valid on the interface at any time

Pint ¼ mð@F=@TÞðZ¼0Þ; ð@W=@TÞðPlateÞ ¼ �ð@F=@ZÞðZ¼0Þ; ð15Þ

where Pint is the internal pressure under the plate, and Pext the external loading on the plate.
According to these conditions, the coupled equations can be written as

@2W=@T2 ¼ y2ð@2W=@X 2 � @C=@X Þ þ mð@F=@TÞðZ¼0Þ þ PextðX ;TÞ; ð16Þ

@2C=@T2 ¼ @2C=@X 2 þ y2ð@W=@X �CÞ; ð@W=@TÞ ¼ �ð@F=@ZÞðZ¼0Þ;

@2F=@T2 ¼ d2ð@2F=@X 2 þ @2F=@Z2Þ: ð17219Þ

The first three equations are valid for the plate and on the boundary of the liquid while the
fourth is valid in the fluid domain and on its boundary.

3. Numerical solution and simulation

The previous system of coupled equations could take the form of an evolving system and be
able to receive a solution by an explicit scheme of integration in time if all terms including it could
be isolated.

3.1. An explicit scheme for time integration

To solve propagating equations, that is to say hyperbolic partial-derivative systems, an explicit
scheme for time integration can be used, while the Courant–Freidrichs–Levy (CFL) stability
condition is fulfilled. The central finite difference method is among the simplest and very efficient
ways of resolution. It has been used with success in similar problems concerning the dynamics of
plates alone [7]. In the case of coupling, the CFL condition must be verified for every domain. If
the second order central finite-difference method is applied to the plate and to the liquid, it is
justified that the same order of precision be used to write the interface condition. Care must be
taken also to use only centred differences on the interface. This is possible by introducing virtual
points beyond the boundary of the liquid. Then, neither loss in precision nor instability will
happen.
To set the interface condition, it is necessary to use Eq. (19) while accounting for Eq. (18).

Setting the development at the second order of the potential F; in the neighbourhood of the
interface, one writes for every X and every T ; and for an arbitrary small (negative) value of dZ

FðdZÞ ¼ Fð0Þ þ dZð@F=@ZÞðZ¼0Þ þ ðdZ2=2Þð@2F=@Z2ÞðZ¼0Þ: ð20Þ

Introducing Eq. (18),

FðdZÞ ¼ Fð0Þ � dZð@W=@TÞ þ ðdZ2=2Þð@2F=@Z2ÞðZ¼0Þ; ð21Þ

so on the interface, Eq. (19) becomes

@2F=@T2 ¼ d2ð@2F=@X 2 þ ð2=dZ2ÞðFðdZÞ � Fð0Þ þ dZ@W=@TÞÞ: ð22Þ
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Now it is possible to have the required form with all time-dependent terms isolated. For the plate
and on the interface

@2W

@T2
� m

@F
@T

� �
ðZ¼0Þ

¼ y2
@2W

@X 2
�

@C
@X

� �
þ PextðX ;TÞ ¼ A; ð23Þ

@2C=@T2 ¼ @2C=@X 2 þ y2ð@W=@X �CÞ ¼ B; ð24Þ

@2F
@T2

�
2d2

dZ

@W

@T
¼ d2

@2F
@X 2

þ
2

dZ2
ðFðdZÞ � Fð0ÞÞ

� �
¼ C; ð25Þ

and in the liquid

@2F=@T2 ¼ d2 @2F=@X 2 þ @2F=@Z2
� �

¼ D: ð26Þ

In order to solve these equations numerically, it is necessary to use discrete values for all the
functions W ; C and F: A regular mesh of sizes DX ;DZ;DT ; can be chosen and the function
evaluated at every node. The differential operators on functions can be replaced by centred finite
differences on discrete values, according to a well-known technique. For each time T ; the second
members A; B; C and D of Eqs. (23)–(26) can be evaluated easily. For any discrete function in
space at a point Mi; and called f ðTÞ; one sets f ðT þ DTÞ ¼ ff (following value), f ðTÞ ¼ f (actual
value), f ðT � DTÞ ¼ fp (previous value). According to this notation, the results of the operators
are

@2f =@T2 ¼ ð ff � 2f þ fpÞ=DT2; @f =@T ¼ ð ff � fpÞ=ð2DTÞ: ð27Þ

Setting the arbitrary value dZ ¼ DZ in Eq. (25), Eqs. (23) and (25) can be written as

ðM1Þ
Wf

Ff

 !
¼ ðM2Þ

W

F

 !
þ ðM3Þ

Wp

Fp

 !
þ

A

C

 !
; ð28Þ

where ðM1Þ; ðM2Þ and ðM3Þ are ð2� 2Þ matrices of fixed numbers.
Multiplying by ðM1Þ

�1 and rearranging, one obtains, ai and bi being constant coefficients

Wf ¼ a1W þ a2Wp þ a3Fþ a4Fp þ a5A þ a6B;

Ff ¼ b1W þ b2Wp þ b3Fþ b4Fp þ b5A þ b6B: ð29Þ

These two equations are valid for any point on the plate and on the boundary of the liquid.
Eq. (24) leads directly to the following values Cf ; valid for any point of the plate. Eq. (26) leads
directly to the following values Ff ; valid for any point in the liquid. Under this form, the system
can be solved in an explicit way. The values of the functions are calculated for any successive times
separated by DT : The CFL stability condition will be satisfied if DT is chosen as the minimum of
DX=ð4y2DX 2 þ 1Þ1=2 (valid for the plate) and DX=dO2 (valid for the liquid). The discrete value
function should be able to account for boundary conditions if the domain was not infinite. The
initial conditions are also easily introduced. They are particularly simple if the system is at rest at
the beginning of loading.
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3.2. First simulations and their analysis

The simulation of responses of plates coupled with liquid can be made in such a large field of
possibilities that it is necessary to choose among the most significant and demonstrative.
To keep a large generality, the responses are presented for infinite domains only—large plates

or long strips and deep fluids. This choice is realistic, even for bounded domains, if the response is
observed briefly, before the boundaries are reached.
Another fundamental choice is the form of the loading. For several reasons, the presentation

will correspond to a pressure spreading from a central point with a constant velocity. The
first reason is that a spreading pressure, with high velocity and a steep front, is realistic
in detonation loading. It can be applied on a strip or a plate and can justify a 1-D modelling
or a cylindrical symmetry assumption. The second reason for this choice is that the results
clearly underline the presence of a steady state solution and suggest the possibility of an analytical
study.
Assuming that the numerical resolution of the previous coupled equations is well managed,

different results are presented. They all correspond to the 1-D response of an infinite strip
submitted to a uniform unit pressure spreading at a constant non-dimensional velocity V ¼ v=vp;
(v being the dimensional velocity), symmetrically around a central line of origin. For this reason of
symmetry, only the X -positive part will be presented. The previous non-dimensional form of
functions and variables is used. For the whole presentation, some parameters are fixed: m; d and y:
They correspond to a determined couple of plate material and liquid. For example, for aluminium
and water, approximate values are: m ¼ 0:1; d ¼ 0:28; y ¼ 0:55:
To explore many of the responses, it would be necessary to set the velocity V over a wide range.

The non-dimensional characteristic velocities in the plate are Vp ¼ 1 (velocity of longitudinal
waves in a plate), Vs ¼ y (velocity of shear waves) with VsoVp;Vs ¼ vs=vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1� uÞ=2

p
and

VsB0:55 for v ¼ 0:3: For the liquid, V1 ¼ d; a value that can occur anywhere among Vp and Vs:
Then three different cases can occur. Finally, when the velocity V of loading is chosen, it can take
place anywhere among three values arranged in three different manners; to summarize, 12
different cases should be studied to explore all possibilities.
After testing every possibility, only four of them are presented in this work, showing the most

significant results and being representative of all cases. For composite plates, dmay be higher than
y; but for metallic plates and water, the most common case, d remains lower than y: Under this
latter assumption, the four cases are: case 0 : Vodoyo1; case 1 : doVoyo1; case 2 :
doyoVo1 and case 3 : doyo1oV :
For each case, the pattern of evolution of displacements W and C; and of stresses S and G is

presented in Figures 2–9.
The evolution of plate motion shows clearly how a transient response takes place. Undulations

appear from the centre of application of pressure, grow and progress with a non-uniform velocity.
The wavelength becomes shorter and shorter with the x co-ordinate and longer and longer with
time. Finally, the oscillating part decreases and links to a part of the response, which seems
invariable if observed in a translation along the x co-ordinate at the velocity of the loading front
(the position of the load front is marked on figures by a blank line).
In all cases, the observation of the pressure in the liquid shows two regions: one, behind the

loading front tending toward the value Pext of the loading pressure, and the other, ahead, tending
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(b)

(a)

Fig. 2. Displacements of the plate subject to a pressure spreading at the velocity V ¼ 0:2; (case 0—evolution with time):

(a) deflection W ðX Þ; (b) rotation CðX Þ:
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toward zero. In the case of front load velocity greater than wave velocity in the liquid, pressure
front appears clearly in the liquid. In case 0, no pressure front appears.
For any velocity of charge, the transient part of the response builds itself in a similar way.

For the second part of the response, which follows the pressure front, the 3-D representation
(Figs. 4–9) suggests that the solution evolves toward a stationary form. These remarks are in good
agreement with the responses, already mentioned, of plates alone. If one looks precisely at the
numerical results, the confirmation of this assumption is verified only in cases 1–3. On the
contrary, in case 0, i.e., for Vod; the exact stationary solution is never reached. The study shows
that the maximum of displacement on the front line increases incessantly (Fig. 2a). The other
functions, C;S and G seem nearer from a stationary response, but it is not possible to really
separate a transient part from a steady state one. The existence of a steady state response is
confirmed in all cases when V > d; but some differences are worth noting.
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(a)

Fig. 3. Stresses in the plate subject to a pressure spreading at the velocity V ¼ 0:2 (case 0—evolution with time): (a)

flexural stress SðX Þ; (b) shearing stress GðX Þ:
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 (a)

(b)

Fig. 4. Displacements of the plate subject to a pressure spreading at the velocity V ¼ 0:4 (case 1—evolution with time):

(a) deflection W ðX Þ; (b) rotation CðX Þ:
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In case 1 (Figs. 4 and 5), the stationary response shows oscillations, only on the right of the load
front. They decay quickly with X : In case 2 (Figs. 6 and 7), the stationary response contains no
oscillation. A surprising single peak in the representation of stresses G seems to travel with the
load front. In case 3 (Figs. 8 and 9), slightly decreasing oscillations are visible, but only behind the
load front. No perturbation is present ahead of the front, which agrees well with the supersonic
velocity of the charge.
If the response of the coupled system is calculated with the condition in X ¼ 0 other than the

symmetry around the central line of origin presented earlier, it is possible to verify that the
transient response is strongly dependent on the boundary conditions at the origin. The condition
of symmetry means than the component of speed is null in the liquid for X ¼ 0: If another
condition was imagined, another transient response would take place. On the contrary, the
stationary part travelling with the loading always remains the same, only depending on the
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 (a)

(b)

Fig. 5. Stresses in the plate subject to a pressure spreading at the velocityV ¼ 0:4; (case 1—evolution with time): (a)

flexural stress SðX Þ; (b) shearing stress. GðX Þ:
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(a)

(b)

Fig. 6. Displacements of the plate subject to a pressure spreading at the velocity V ¼ 0:7; (case 2—evolution with time):

(a) deflection W ðX Þ; (b) rotation CðX Þ:
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velocity of the pressure front. For displacements, the larger values are obtained in the transient
response and grow with time. These significant values of displacements do not generally
correspond to great deformations because the wavelengths are rather long. For the stresses, the
values obtained in the stationary response are significant and give interest to the study of the
steady state response.

4. The steady state solution

A steady state solution exists if the motion of the coupled system appears frozen to an observer,
which moves at the load speed. It requires that a loading with a constant profile should be moving
with a constant velocity on an infinite long strip.
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(a)

(b)

Fig. 7. Stresses in the plate subject to a pressure spreading at the velocity V ¼ 0:7; (case 2—evolution with time): (a)

flexural stress SðX Þ; (b) shearing stress GðX Þ:
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The formulation of a steady state solution needs some abstract analysis, especially to express
the displacement values at the infinite ends of the plate. These do not vanish necessarily for
X ¼ �N: Let V be the non-dimensional loading velocity ðV ¼ v=vpÞ; any function describing the
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(a)

(b)

Fig. 8. Displacements of the plate subject to a pressure spreading at the velocity V ¼ 1:2; (case 3—evolution with time):

(a) deflection W ðX Þ; (b) rotation CðX Þ:
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motion of the system can be expressed according to the Y position of an observer moving with the
load, where Y ¼ X � VT ; then,

W ðX ;TÞ ¼ #WðY Þ; CðX ;TÞ ¼ #CðY Þ; FðX ;Z;TÞ ¼ #FðY ;ZÞ;

under the condition that PðX ;TÞ ¼ #PðY Þ: ð30Þ

By convenience, the sign #will be omitted. Replacing partial derivatives by ordinary ones, @=@X ¼
d=dY ; @=@T ¼ �Vd=dY ; the system of coupled equations can be written as

V2 ¼
d2W

dY 2
¼ y2

d2W

dY 2
�

dC
dY

� �
� mV

@F
@Y

� �
ðZ¼0Þ

þPextðY Þ; ð31Þ
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(a)

(b) 

Fig. 9. Stresses in the plate subject to a pressure spreading at the velocity V ¼ 1:2; (case 3—evolution with time): (a)

flexural stress SðX Þ; (b) shearing stress GðX Þ:
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V2 d2C=dY 2 ¼ d2C=dY 2 þ y2ðdW=dY �CÞ; ð32Þ

V dW=dY ¼ ð@F=@ZÞðZ¼0Þ; V2@2F=@Y 2 ¼ d2ð@2F=@Y 2 þ @2F=@Z2Þ: ð33; 34Þ

If any free wave travels at the velocity V ; the solution of homogeneous equations will take the
form

W ðY Þ ¼ W0e
lY ; CðY Þ ¼ C0e

lY ; FðY ;ZÞ ¼ F0ðZÞelY : ð35; 36Þ

Applying derivatives, one obtains

W0l
2ðV2 � y2Þ þC0ly

2 þ lmVF0ð0Þ ¼ 0; W0ly
2 þC0ðl

2 � y2 � l2V2Þ ¼ 0 ð37; 38Þ

ðdF0=dZÞðZ¼0Þ ¼ lVW0; d2F0ðZÞ=dZ2 � ððV2 � d2Þ=d2Þl2F0ðZÞ ¼ 0: ð39; 40Þ

Setting O ¼ ððV2 � d2Þ=d2Þ1=2 and O0 ¼ jðV2 � d2Þ=d2j1=2; ð41Þ

if V > d;O ¼ O0; real; if Vod;O ¼ iO0; imaginary ð42Þ

Eq. (40) requires that F0ðZÞ take the form of two independent solutions, A�e
lOZ and Aþe

lOZ

Suppose the first form

F0ðZÞ ¼ A�e
lOZ; ð43Þ

ðdF0=dZÞðZ¼0Þ ¼ �A�lO: ð44Þ

By comparison with Eq. (39), A� is deduced as

A� ¼ �ðV=OÞW0; and then F0ð0Þ ¼ �ðV=OÞW0: ð45Þ

Reintroducing F0ð0Þ into Eq. (37), the resultant system is

W0ðl
2ðV2 � y2Þ � lmV2=OÞ þC0ly

2 ¼ 0; W0ly
2 þC0ðl

2 � y2 � l2V2Þ ¼ 0: ð46Þ

The compatibility of this system gives the characteristic equation

lðl3ðV2 � y2Þð1� V2Þ � l2ð1� V2ÞmV2=O� ly2V2 þ my2V2=OÞ ¼ 0: ð47Þ

The solutions are

l0 ¼ 0; l1; l2; l3: ð48Þ

If the other choice had been made ðF0ðZÞ ¼ Aþe
þlOZÞ; the sign of O in Eq. (41) would have

changed and the values found as

l00 ¼ 0; l01 ¼ �l1; l
0
2 ¼ �l2; l

0
3 ¼ �l3: ð49Þ

To obtain explicit solutions, the real or imaginary O cases must be studied separately.

4.1. Case V > d: the front load velocity is greater than the wave propagation velocity in the liquid

According to Eq. (42), O ¼ O0; real. Eq. (47) has real coefficients. At least one of its roots is
real. Non-real roots must be conjugate. The free waves, solutions of the homogeneous equations,
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take the form

W ¼ a0 þ
Xj¼3

j¼1

aje
ljY þ

Xj¼3

j¼1

a0
je
l0jY ; C ¼ b0 þ

Xj¼3

j¼1

bje
ljY þ

Xj¼3

j¼1

b0je
l0jY ; ð50; 51Þ

F ¼ c0 þ
Xj¼3

j¼1

cje
ljðY�O0ZÞ þ

Xj¼3

j¼1

c0je
l0jðYþO0ZÞ; ð52Þ

a0; b0; c0 being real constants and aj; bj; cj; a0
j; b

0
j; c

0
j; complex ones.

Introducing compatibility using Eq. (46) one obtains

b0 ¼ 0; bj ¼ aj

ljy
2

l2j ðV2 � 1Þ þ y2
; b0

j ¼ a0j
l0jy

2

l
02
j ðV2 � 1Þ þ y2

; j ¼ 1;y; 3: ð53Þ

Introducing the compatibility using Eq. (33)

cj ¼ �ajV=O0; c0j ¼ �a0jV=O0; j ¼ 1;y; 3: ð54Þ

The velocity of loading of the plate being supersonic in respect to the liquid, no disturbance can
occur in the liquid earlier than in the plate, for any value of the Y co-ordinate. Especially, if one
consider a line Y þ O0; no pressure potential can be present, for large positive values of Y ; behind
or ahead of this line. For this reason, coefficients c0j are always zero, like b0

j and a0
j:

To obtain the forced response, a particular solution of the complete system must be added to
the previous ones. Rewriting the external loading PextðY Þ ¼ �P0;Hð�Y Þ where P0 is the intensity
of the loading pressure and Hð�Þ the Heaviside step function, one verifies easily that the following
expressions are convenient for a particular solution:

for Yo0; for YX0

Wp ¼ ðP0O0=mV2ÞY ; Wp ¼ 0; ð55Þ

Cp ¼ P0O0=mV2; Cp ¼ 0; ð56Þ

for Y � O0Zo0; for Y � O0ZX0

Fp ¼ �ðP0=mV ÞðY � O0ZÞ; Fp ¼ 0: ð57Þ

The particular solutions Wp and Cp are discontinuous in Y ¼ 0 and Fp is discontinuous on the
line Y � O0Z: The free waves must be assumed different for each side of a discontinuity. Writing
the expression eljY ¼ eðajþbjÞY ; it is clear that this kind of solution exists only for Yo0 if aj > 0 and
only for Y > 0 if ajo0:
By using this remark and introducing arbitrarily the multiplying factor P0 into the free wave

equation, the final form of the complete solution can be written
for Yo0

W ¼ �P0 a0 þ
X
aj>0

aje
ljY �

O0

mV2
Y

0
@

1
A; ð58Þ
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C ¼ �P0 b0 þ
X
aj>0

ljy
2

l2j ðV2 � 1Þ þ y2
aje

ljY �
O0

mV2

0
@

1
A; ð59Þ

F ¼ �P0 c0 �
V

O0

X
aj>0

aje
ljðY�O0ZÞ þ

1

mV
ðY � O0ZÞ

0
@

1
A; ð60Þ

for YX0

W ¼ �P0 a0
0 þ

X
ajo0

aje
ljY

0
@

1
A; C ¼ �P0

X
ajo0

ljy2
l2j ðV2 � 1Þ þ y2

aje
ljY

0
@

1
A; ð61; 62Þ

F ¼ �P0 c00 �
V

O0

X
ajo0

aje
ljðY�O0ZÞ

0
@

1
A: ð63Þ

c00 can be taken to zero by convenience without consequences. a00 is null because W tends toward
zero for very large positive values of Y ; the plate being originally at rest.
Five parameters have yet to be determined: a0; a1; a2; a3 and c0: For this purpose, the continuity

of five functions is assumed: W ;C; dW=dY ; dC=dY in Y ¼ 0 and F along the line Y ¼ O0Z: Five
conditions are obtained,

a0 þ
X
aj>0

aj ¼
X
ajo0

aj;
X
aj>0

lj

l2j ðV2 � 1Þ þ y2
aj ¼

X
ajo0

lj

l2j ðV2 � 1Þ þ y2
aj ð64; 65Þ

X
aj>0

ljaj þ
P0O0

mV2
¼
X
ajo0

ljaj;
X
aj>0

l2j
l2j ðV2 � 1Þ þ y2

aj ¼
X
ajo0

l2j
l2j ðV2 � 1Þ þ y2

aj; ð66; 67Þ

c0 �
V

O0

X
aj>0

aj ¼ �
V

O0

X
ajo0

aj: ð68Þ

The comparison of the last equation with the first one gives the value c0 ¼ �ðV=O0Þa0; and only
the first four equations have to be considered. They can be written more simply by setting
sgnðajÞ ¼ sj:

a0 þ
Xj¼3

j¼1

sjaj ¼ 0;
Xj¼3

j¼1

lj

l2j ðV2 � 1Þ þ y2
sjaj ¼ 0; ð69; 70Þ

Xj¼3

j¼1

ljsjaj ¼
O0

mV2
;
Xj¼3

j¼1

l2j
l2j ðV2 � 1Þ þ y2

sjaj ¼ 0: ð71; 72Þ

Solving the previous linear system, the four values aj are obtained and c0 can be deduced. Then
the steady state solution is completed. All desired functions are described by Eqs. (58)–(63).
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To complete the solution, the values of stresses by Eq. (9) and pressure by Eq. (14) can be
added:

for Yo0; for YX0

S ¼ �P0 �
1

2

X
aj>0

l2j y
2

l2j ðV2 � 1Þ þ y2
aje

ljY

0
@

1
A;S ¼ �P0 �

1

2

X
ajo0

l2j y
2

l2j ðV2 � 1Þ þ y2
aje

ljY

0
@

1
A; ð73Þ

G ¼ �P0
y2ffiffiffiffiffi
12

p X
aj>0

l3j ðV
2 � 1Þ

l2j ðV2 � 1Þ þ y2
aje

ljY

0
@

1
A;G ¼ �P0

y2ffiffiffiffiffi
12

p X
ajo0

l3j ðV
2 � 1Þ

l2j ðV2 � 1Þ þ y2
aje

ljY

0
@

1
A; ð74Þ

for Y � O0Zo0; for Y � O0ZX0;

P ¼ �P0
mV2

O0

X
aj>0

ljaje
ljðY�O0ZÞ � 1

0
@

1
A;P ¼ �P0

mV2

O0

X
ajo0

ljaje
ljðY�O0ZÞ

0
@

1
A: ð75Þ

The latter equation shows that a pressure front exists in the liquid. Its slope corresponds exactly to
the trace left by a supersonic motion in an acoustic medium.
To specify the possible steady state responses, it is necessary to look closely at the values of

roots lj: Looking to Eq. (47), it can be observed that the velocities V ¼ 1;V ¼ y and V ¼ d
appear as characteristic, able to change the nature of solutions.
Fig. 10 shows the values lj functions of V : The sign of their real part allows prediction if the

solution vanishes for one of the sides Yo0 or Y > 0: The figure summarizes the kind of solution
for every region of loading speed. To illustrate the result, the (Figs. 11–14) show the shape of the
steady state responses in any region, according to V > d:
The responses visible in these figures agree well with the stationary part of responses presented

in Figs. 4–9. The existence of undulations behind or ahead of the load front is now clearly
explained. A quantitative comparison between the theoretical stationary responses and the
computed ones confirms that they correspond exactly, for frequencies as well as for amplitudes.
The rear part of the theoretical response and especially its expression when Y tends toward �N

corresponds well to those predicted by the calculation.
Fig. 15 illustrates the pressure in the liquid for a given value V ¼ 0:4: It appears clearly that the

pressure propagates in the liquid along a straight front line. The pressure profile remains the same
and its peak does not decrease with the distance from the plate. This surprising result is due to the
theoretical inviscid character of the fluid and to the plane modelling, without possible expansion
in the transverse direction. For other choices of loading velocity, higher than d; the pressure
profile can be described by Eq. (75).

4.2. Case Vod: the front load velocity is lower than the wave propagation velocity in the liquid

(O ¼ iO0; imaginary)

In this case, even coefficients of Eq. (47) are imaginary. At least one of its roots is imaginary.
Other not purely imaginary roots have the same imaginary parts and real parts opposite.
To clarify: for O ¼ �iO0; l1 ¼ ig1; l2 ¼ ig2; l3 ¼ ig3; or l1 ¼ ig1; l2 ¼ a2 þ ib2; l3 ¼ �a2 þ ib2;

for O ¼ þiO0; l0j ¼ �lj; j ¼ 1;y; 3:
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To obtain the real responses W ; C and F; conjugate values must be associated. The calculation
of a possible steady state response can be looked for but needs new developments. The fine
observation of the numerical transient solution reveals that it evolves continuously in the
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Real roots 

 
 

Case 0 

 
No steady-state 

response 

Case 1 

Exponential for Y<0 
 

Vibrating and strongly

decaying for Y>0 

Case 2 

Twice exponential for Y<0  
 

Exponential for Y>0

Case 3 
 

Exponential and vibrating 
slightly decaying for Y<0 

 
Null for Y>0 

Real part of complex roots  

 

Positive imaginary part of complex roots 

Fig. 10. Wave number and response form of a coupled plate according to the load front velocity.
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neighbourhood of the load front and never tends toward a frozen shape. This conclusion agrees
well also with a physically reasonable solution. The velocity of the loading being subsonic in
respect to the liquid, no pressure front exists. So, in an unbounded loaded liquid, no equilibrium
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Case 3 

Case 2 

Case 1 

Fig. 11. Steady state deflection W ðY Þ of a coupled plate for different cases of pressure front velocity.

Case 3 

Case 2 

Case 1 

Fig. 12. Steady state rotation CðY Þ of a coupled plate for different cases of pressure front velocity.
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Case 3 

Case 2 

Case 1 

Fig. 13. Steady state flexural stress SðY Þ in a coupled plate for different cases of pressure front velocity.

Case 3 

Case 2 

Case 1 

Fig. 14. Steady state shearing stress GðY Þ in a coupled plate for different cases of pressure front velocity.
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state can take place and the response has necessarily a transient character. Nevertheless, stresses
visible in Fig. 3 seem close to a stationary form. It suggests that the response, in the
neighbourhood of the loading front, could contain a stationary part although it could not be
completely stationary.

5. Conclusion

The study of the coupled system made of an unbounded plate in contact with unbounded
liquid shows that it is possible to predict the response to a pressure step travelling on the surface
of the plate. A steady state analytical solution is found for waves travelling with the load front
for all velocities of charge higher than the velocity of acoustic waves in the liquid. A numerical
resolution is also proposed and validated, which is able to account for boundary conditions
and for any form of loading. This computational method is applied to find the response of a
plate to a pressure step spreading on a plate. The numerical solution shows how a
transient response takes place and then evolves to a stationary response corresponding to the
theoretical one.
The non-dimensional expression of variables enables the application of the results to any real

cases of coupled liquid and plates. The chosen form of the loading, a spreading pressure, is well
adapted to predict the responses to shock waves, such as those found in detonations. For these
kinds of loading, a pressure step travels at very high velocities ranging among the characteristic
velocities of a plate or of a liquid.
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Fig. 15. Steady stress pressure PðY ;ZÞ in the coupled liquid for load front velocity V ¼ 0:4:
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The condition of an unbounded domain is not really very common, but for a small enough
time, the beginning of the response is the same, at least before the motion reaches the limits of the
domain.
For more complicated loading or boundary conditions, the computational method is very

simple to apply and leads to results worthy of confidence. Nevertheless, for supersonic loading,
unchanged in translation, the analytical stationary solution is always adequate to describe the
response in the neighbourhood of the front of loading. The computational method is a useful
complement to obtain the whole transient response.
Previous work by Renard and Taazount [7], has shown that the response of a plate to a pressure

spreading with a cylindrical symmetry around a central point was very close to the response of a
strip to a travelling pressure travelling along its axis. The results compared the transient and
steady state responses and concerned displacements and stresses. It would be interesting to
confirm this result for plates coupled with liquid. The present work prepares a possible
comparison.
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